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The muddy history of artificial viscosity

Ann E. Mattsson

* Artificial viscosity is commonly attributed to Von

Neumann and Richtmyer’s 1950 paper
* Too often this is truncated to Von Neumann alone

* That paper had three main ideas: a finite difference
solution to the PDEs, artificial viscosity & a stability

analysis.
* Two of these are Von Neumann’s brainchildren, one is

Richtmyer’s.
* The original artificial viscosity was developed by
Richtmyer (alone) in 1948 at Los Alamos
* The 1950 version is given as a pseudo-pressure, while the
1948 version is a viscous force.
* The forms are subtly different, do the details matter? i




The first “hydro” calculations
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* The first hydrodynamic calculation was
described in a Los Alamos report (LA-94) on
June 20, 1944 - lead author Hans Bethe

—Feynmann was the calculational lead and marked the
transition from human computers to IBM machines
(done in April/May ‘44).

—They used two methods to compute shocks, but only
one of them worked well (the shock fitting by Peierls).

—The finite difference method produced severe post-

shock “wiggles” explained as thermal excitation.

* Thereafter calculations were 1-D and
Lagrangian, shocks were tracked until 1948

 Von Neumann developed a “simple” finite
difference method at Aberdeen (published &
report on March 20, 1944).




The artificial viscosity paper by Von
Neumann and Richtmyer, J. Appl. Phys. 1950

A Method for the Numerical Calculation of Hydrodynamic Shocks

J. VoNNEUMANN AND R. D. RICHTMYER
Institute for Advanced Study, Princelon, New Jersey

(Received September 26, 1949)

The equations of hydrodynamics are modified by the inclusion of additional terms which greatly simplify
the procedures needed for stepwise numerical solution of the equations in problems involving shocks. The
quantitative influence of these terms can be made as small as one wishes by choice of a sufficiently fine mesh
for the numerical integrations. A set of difference equations suitable for the numerical work is given, and the
condition that must be satisfied to insure their stabilty is derived.

I. INTRODUCTION

N the investigation of phenomena arising in the flow

of a compressible fluid, it is frequently desirable to
solve the equations of fluid motion by stepwise numeri-
~cal procedures, but the work is usually severely compli-
cated by the presence of shocks. The shocks manifest
themselves mathematically as surfaces on which density,
fluid velocity, temperature, entropy and the like have
discontinuities; and clearly the partial differential
equations governing the motion require boundary condi-
tions connecting the values of these quantities on the

vO S1des ot each ' riace ne necessary bounaarv

(but preferably somewhat larger than) the spacing of the
points of the network. Then the differential equations
(more accurately, the corresponding difference equa-
tions) may be used for the entire calculation, just as
though there were no shocks at all. In the numerical

results obtained, the shocks are immediately evident.

as near-discontinuities that move through the fluid with
very nearly the correct speed and across which pressure,
temperature, etc. have very nearly the correct jumps.

It will be seen that for the assumed form of dissipa-
tion (and, indeed, for many others as well), the Rankine-
Hugoniot equations are satisfied, provided the thick-
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LA-671, The first description of artificial
viscosity written by Richtmyer (only!)

Classified till 8/26/93. In LA-671
the period right after WWII " gories A

all Lab reports were intrinsically
treated as classified. “
This dcowmoent oomtminn}_s_moao

FROPOSED NMERICLL AEVHOD FOR CALCULATION OF SEOCKS

oo Bre The projects Richtmyer was
'« D. Richtayer working on in 1947 and 1948
— were key to the development

of the method. The
application was too complex

¥ for shock fitting.
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report five months later in 1948 e - gomat .
° c
(March to August) reporting on 7,y -———— g
numerical experiments. T
. aywcxc-umu;x_f_-u
He uses both the term “fictitious” Lirss
and “mock” to describe the term, —iii
But not “artificial”. All of these are o hat 0 e s s o
unfortunate in their connotation. OB YOO X 105 AT
Work done byt Report written by:
au a au a au . Robert D, Richtmyer ’ Robert D. Richtmyer
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The VNR50 paper discusses “q
which has led to a Hugoniot

focused view point while R48
originally discussed the viscosity, .‘

which is a very different view
point.
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What is the point of this in the present
context?

Ann E. Mattsson

* Von Neumann-Richtmyer (VNR) form was subtly
different than Richtmyer’s original formulation.

* This has put a focus on the Hugoniot (shock) locus

rather than other shock descriptions.
—The Richtmyer form focuses on the viscous form, and the
Rayleigh line, which may rid solutions of anomalies that

have plagued computations for decades.
—It also allows for a more systematic framework to develop

automatic coefficient prescriptions for the viscosity.
* The same approach can work with other dissipation

approaches, i.e., Riemann solvers | 1Ap
—using the Rayleigh line instead of the Hugoniot. "




Steepenlng of Shock Waves . Rankine-Hugoniot equations: '
.+ Mass conservation

i« Momentum conservation

: » Energy conservation

into step shock. Materials relations:
: » Incomplete EOS: P(V,E)

Ann E. Mattsson

High pressure part of wave profile moves
faster than low pressure part -> steepening

Hydro-dynamic equations:
* Mass conservation

* Momentum conservation
* Energy conservation
Materials relations:

* Viscosity

* Heat conduction

Real materials
properties give
P | shocks too thin
to resolve in

3 | hydro-codes.

. EOS: E(V,S) \
N—_ \

' Thickness and details of shock profile are :
I determined by viscosity and heat conduction

| but is neglected in the RH equations. / %“-‘{:n?l,
............................... oratornes




Artificially stopping steepening of Shock

Waves

Hydro-dynamic equations:
* Mass conservation

* Momentum conservation
* Energy conservation
Materials relations:

* Viscosity

* Heat conduction

 EOS: E(V,S)

>~

Ann E. Mattsson

R48 explicitly
discusses
desiring a
steady wave
profile in the
shock frame.

We need to tune the materials properties artificially to
make the full profile move at the same speed.

g
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Steady Wave Equations

Ann E. Mattsson

x=z- U, tin hydro equations:

du
u=—==q={(P=F)+m’*(V-V,)]
dx
K dT
— = =[(E-Ey)-(V, = V)(B, + 1m*(V, - V)]
m dx
u is the viscosity Richtmyer derived his original
K is the heat conductance expression for artificial viscosity from

these equations (with k=0) in his 1948
LA-671 report.

m is the constant mass flux
u is the particle velocity

Laboratories




The profile states are not necessarily shock
states.

Shock profile states
Red dashed: Hugoniot
Blue: Rayleigh line (step profile)
Purple: No heat conduction within profile (smeared out profile)

P
2 Follow the k = 0 path:
Idealgas ! (No artificial heat conductance)
v=5/3 ’
" —g=[(P-P)+m*V-V,)]

XS
~
~
Ss
~~
~
~~
~—

V.V, Vo

@
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0=[(E-E)-(Vy=V)P+1m*(V, - V)]
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Viscosity, no heat conductance:

Shock profile states
Red dashed: Hugoniot
Blue: Rayleigh line (step profile)
Purple: No heat conduction within profile (smeared out profile)

Ann E. Mattsson

[(P+q)FB)+m*(V-V,)|=0

Pressure, density

Final State

1
(E-E,)= E(l(P+q) +F)(V,=V)
P+q fulfills the jump equations! -
aq
\)v ________________________________ s y xort
o V1 V 0 ‘9

—_—

Makes sense: Viscosity is simply a delay, the state in a fixed point
does not go directly from (P,,V,) to (P,,V,). However, eventually it

gets there, faster if g is smaller (directly if g=0). / Sand
Laboratories




Now we know what value g must have.
How do we implement it?

Ann E. Mattsson

The equation for g can be written in

1) —qg=|{(P-P)-m*(V,-V)
[ 0 0 ] many ways, which is best to implement?

* Can we get m, the mass flux,

1
2) 4= l(E-Eo)—E(P+Po)(Vo -V)] accurately?
e Storing the initial state?

y e Calculate dP/dV as AP/AV?
P
+ ) * Calculate dS/dV as AS/AV, but how do

v( P dP) V(_aP

3) —q=—|rot—|=—
r'vv dv) T'\ dVig dV we get AS?
* Use weak shock approximations for
4) _q=Tﬁ entropy?
dV

Probably need to be combined with limiters.
This g gives a steady wave, but is the profile wide enough? We do NOT

want to have artificial heat conductance. Can we use the limiters cleverly o
. .




In 1942 Hans Bethe derived the entropy production in a weak shock:

Ann E. Mattsson

3
AV
TAS=-1Gc? > TAS:—lE(Au)B
v °c

Where G is the fundamental derivative: G 1 VGZP/3V2|S 1 dpc
2 9P/AV|,  coap

S

(pc)’ =-dP 9V

and we have used |OCAV =Au— = ;¢ C—
|4 C At
And we arrive at the main formula for the Note: This is
artificial viscosity that we have tested so far: quadratic but
n AS 1 G i with a ‘new’
C coefficient.
g=-TE ~ 722 25 (A PE ng(Au)z

aVv AV 6 c Au




Turning this into a practical algorithm

Ann E. Mattsson

 The standard form still works as a default and

foundation.

* We add several elements to this form to achieve utility
—Automatic quadratic coefficient calculation, two forms
—Viscosity based on the local Rayleigh line

—Bounding selection criteria
—Proper coefficient of linear viscosity

—A “smoothed” shock switch

* We also introduce changes to the viscosity based on
the finite width of the shock.

* Together with limiters and hyperviscosity it works well

. . E
National




How to take the Rayleigh line equation and

derive a quadratic viscosity?

* The key is to approximate the Rayleigh line locally,
ou ou

p—po+m2(V—VO)=Ma—XeAp+m2AV=Ma—X

Ann E. Mattsson

* Putting this into the viscous form of the viscosity:

L oGy =

dx 6

— Rearrange and approximate with local data, solve for the viscous coefficient

* This produces an estimate for the viscosity through
the estimate of an effective quadratic coefficient,

(Ajp+m]2_AjV) - (Ajp+m]2,AjV)
j

1 ~
ngGj= mA VA u or m°A VAV
P8,V 8, P75, > ot
/ boratories




Automatic quadratic coefficient
* From the standard Hugoniot-based selection

p, =P, =P, (c, +¢,Au)Au=p, (c, +1GAu)Au

_19pc| _1 (pj+lcj+1_'0jlcj1)
J ¢ 9P |s € Pj1=Pja

* This can be shown to be equivalent to the quadratic
viscosity introduced by Lax & Wendroff in 1960

PG, §jj|§§j - aaicigz Just an aside

* Finally we bound the selection to assure stability and

guard against noise contaminating the solution
—The analytical value of G is used based on the shock entropy production in

the weak shock limit. (W>1 measures the width of the shock)
G = min(lWG ,G )
J 6 J7

Ann E. Mattsson

C =median(lG,G.,c )
2 6 Jj° upper




Ann E. Mattsson

Computing W; (Using the discrete profile)

 We compute viscosity usually developing the coefficients by
considering an ideal shock jump.

* The real captured shock is discrete containing several points.

A quadratic viscosity is nonlinear (second-order) in the size of

the jump
—Example, a jump of 2 across two cells produces a substantial

difference in the jump size squared.
* Entropy is third order in the size of the jump, has a larger

impact.
* The wider the discrete shock, the larger the impact.

2 Sandia
National
/ Laboratories



30+

w

(Au)

Examples plotted as a function of the
symmetry of the jump and number of cells

(Au)
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0.2 04 0.6 0.8 1d

Multiplier on the coefficient
For a two cell wide shock jump

W=V, v, [y + (-, ) |

The upper curve is “W” and the lower curve
is the ratio of jump sizes.

. | . . . | . . . |
0.2 04 0.6 0.8

Multiplier on the coefficient
For a three cell wide shock jump,

2 steps the same (pre and post jump).




The Riemann solver analogy fills in the final
details with the correct linear coefficient

* The usual Hugoniot-based analysis sets this as equal to “1”
—This analysis is completely correct, but the interpretation
is wrong due to a simple error.
* Looking at this selection in the context of a first-order
method with a linearized Riemann solver clears up the

confusion.
—The second term is the linear dissipation

n+l __ _n A pc n
u, =u,— t(p]+1/2_p] 1/2) Pip= (p p]+1)_ (u]+1 uj)
* Computing the standard fluxes gives the right coefficient

scale... everything is half as big as the usual analysis
indicates. C,=1/2, and C, is half the size you thought it

should be

—(consistent with Morgan’s latest work — 20

Ann E. Mattsson




A small change to the hyperviscosity

Ann E. Mattsson

* Ed Love recognized that our hyperviscosity form did

not necessarily satisfy the second law.
—This results by the difference in the sign of the hyperviscous

term and the deformation rate,

Qo = Q(d)+c4 (Q(d)_Q(a))
* Normally the viscosity satisfies the 2" law Q(d)-d <0

* This can be cured by a relatively simple change to the

original form
Qs =Q(d)+e,sign(0(d) o(d)-0(d )

—Satisfaction of the second law is recovered.
—Practically this is a small change only impacting results near

severely rough solution.
‘ Sandia
National
/ Laboratories




Sample results Sod’s Shock Tube

1.087
3 I ! T T T T T T T T T T

1 = Densny-

1UU LIS
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0.03751 1,666

01 02 03 04 05 06 07 08 09
X100 Cells
LRAARN RAAAE REAAS RAAAE RARLY RAARI RALLS LAALS|
Pressure _ 1
i
| N 0 ) :
201001 HHHHHAHA AL b AL 09352 WL UL LT |
1.00000000

01 02 03 04 05 06 07 08 09 00000000x10-16
Using a simple 1-D*Compatible Hydro Scheme, 100 cells and CFL = 0.8 usi Sania
the new viscosity formulation. Sod’s shock tube (170 cycles) RS



Sample results — Noh’s Problem

Ann E. Mattsson

100 Cells VU Ces
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i |
- |
1 | i
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i |
|
|
|
|
O_ [ _1_
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Using a S|mple 1- D(Compatlble Hydro Scheme, 100 ceIIs and CEL 0.8 us
the new viscosity formulation. Planar Noh’s problem (400 cycl /



Conclusions

Ann E. Mattsson

* The differences between the VNR form and the

original Richtmyer form are subtle, but important.
—The focus on the viscous form opens the door to looking at

the Rayleigh line instead of the Hugoniot.
—Neither perspective is correct, and the differences are

instructive and need to be integrated into the numerics
* None of the coefficients are “arbitrary”

* Old papers are full of riches waiting to be

(re)discovered.
 Getting the coefficients correct is a substantial change

2 Sandia
National
/ Laboratories

* Results are encouraging



A few final thoughts

Ann E. Mattsson

* It is probably useful to consider the imposition of a
discrete entropy condition associated with the artificial

viscosity
—To get convergence to the correct weak solution the entropy

condition is important.
—This has not been used for Q’s. It has for Riemann solutions

* The quadratic coefficient is connected to nonlinear
stability (CD Munz 1994, Caramana & Shashkov 1998)

—Inhibits element inversion due to over-compression.
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